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LaRC-TPI 1500 SERIES POLYMERS*

T. H. Hou 1

Lockheed Engineering & Sciences Company
Hampton, Virginia 23666

J. M. Bai 2

Department of Mechanical Engineering & Mechanics
Old Dominion University, Norfolk, Virginia 23508

ABSTRACT

The crystallization behavior and the melt flow properties of two batches of 1500 series

LaRC-TPI polymers from Mitsui Toatsu Chemicals (MTC) have been investigated. The

characterization methods include Differential Scanning Calorimetry, the X,ray diffractography and

the melt rheology. The as-received materials possess initial crystalline melting peak temperatures

of 295 and 305 °C, respectively. These materials are less readily recrystallizable at elevated

temperatures when compared to other semicrystalline thermoplastics. For the samples annealed at

temperatures below 330°C, a semicrystalline polymer can be obtained. On the other hand, A purely

amorphous structure is realized in the samples annealed at temperatures above 330°C. Isothermal

crystallization kinetics were studied by means of the simple Avrami equation. The viscoelastic

properties at elevated temperatures below and above Tgs of the polymers were measured.

Information with regard to the molecule sizes and distributions in these polymers were also

extracted from melt rheology.

*Portions of this work were presented at the 35th International SAMPE Symposium and Exhibition, Anaheim, CA

April 2-5, 1990. 1Supervisor, Polymeric Materials Section. 2Graduate Research Assistant.



INTRODUCTION

LaRC-TPI (Langley Research Center - Thermoplastic Polyimide) is a linear aromatic

polyimide. Since its discovery by NASA in the late 1970s [1-5], this material has been developed

for a variety of high temperature applications, such as adhesive for bonding metals, insulating fiber

and composite design matrix, etc. [6]. In its fully imidized form, however, the relatively poor

flow characteristics for this polymer has limited the application. The viscosity at approximately

100"C above its glass transition temperature (Tg = 250 - 260 °C) is at the order of 105 - 106 Pa-s.

Under a licensing agreement between NASA and Mitsui Toatsu Chemicals, Incorporated

(MTC) of Japan, an effort was undertaken to make this high temperature thermoplastic

commercially available to the aerospace and electronics industries. A melt endotherm was noted

during calorimetric analysis on an earlier version of LaRC-TPI imidized molding powder marketed

by MTC [7,8]. The peak temperature of the endotherm for the as-received material was at 272"C.

It was found that for the samples annealed at temperatures below 320"C, other semicrystalline

forms of the polymer can be obtained, which possess crystal melting peak temperatures between

320-355"C, depending upon the annealing conditions. On the other hand, a purely amorphous

structure was realized in the samples annealed at temperatures above 320"C. Such a transient form

of crystallinity in the earlier as-received powder afforded beneficial flow properties to the LaRC-

TPI polymer system at a relatively low temperature. However, such enhanced flow properties

were not gained without sacrificing other aspects of processing. The material was initially

composed of partially imidized low molecular weight LaRC-TPI oligomers, which formed

crytallization nuclei that provided the enhanced flow characteristics upon melting. The subsequent

processing at high temperatures inevitably generated the unwanted volatile by-products from the

molecule chain extension/ring closure reactions.

In a continuoU-s effort to improve the processibility, MT(_ has recently developed a

controlled molecular W_ght LaRC-TPI polymer. Two very processabie f'orms of LaRC-TPI,

known as medium flow and high flow 1500 series, have been introdu_:ed. These LaRC-TPIs are

encapped, which results in minimal volatile reaction by-products being generated in the high

temperature processing, such as press and injection molding. The adhesive properties of the

medium flow grade material had been reported by Progar et al. [9]. This paper investigates the

thermal and rheological properties of these new forms of semicrystalline LaRC-TPI. The

characterization methods used include differential scanning calorimetry (DSC), the measurements

of X-ray diffraction patterns and the viscoelastic properties.
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EXPERIMENTAL

The LaRC-TPI 1500 powders were prepared and supplied by MTC. Samples of two

different grades were studied as-received from MTC without further treatments. The medium flow

grade material is from lot number 58-704, and is designated hereinafter as MTC-MFG. The high

flow grade material, is designated hereinafter as MTC-HFG, and is from lot number 2410. The

chemical structure of LaRC-TPI is [1]

O O

O O n

LaRC-TPI Chemical Structure

Thermal Properties

A Perkin-Elmer Differential Scanning Calorimeter (DSC) model DSC-7 was used.

Samples (3-6 mg) of finely divided polymer were accurately weighed into aluminum sample

holders on an analytical balance to 10 -4 g. A stream of dry nitrogen was continuously flowing

over the sample and the reference during measurements. The glass transition temperatures (Tg)

and the crystalline melt temperatures (Tin) were determined directly from the thermograms for the

samples treated under either isothermal or constant rate of cooling conditions. The heats of fusion

were obtained by integrating the areas under the endothermic peaks on the thermograms.

X-Ray Scattering

Wide Angle X-ray Scattering (WAXS) data was obtained on powder specimens of these

polyimides. With the X-ray diffractometer operated at 45 kV and 40 mA, using copper radiation

with a flat sample holder and a graphite monochromator, the intensity of 1 s counts taken every

0.01" (20) was recorded on hard disk for the angular range 5-40* (20). An external ct-quartz

standard was used in goniometer alignment.
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Rheological Properties

The melt flow properties of these polymers were characterized by linear viscoelasticity.

Measurements were performed on a Rheometrics System IV Rotary Rheometer equipped with a

parallel plate test fixture. A sample disc of 2.50 cm in diameter was prepared by molding 0.75 g of

material at room temperature under a pressure of 5000 psi. The resulting disc was approximately

1.5 mm in thickness. The sample disc was pre-dried in an oven at 100 "C for at least 24 hours

before use. A dynamic motor was used to drive the top plate to OSCl_ate continuously at a specified

amplitude, covering a range of frequency from 0.1 to 100 rad/sec. The bottom plate, which

remained stationary during measurement, was attached to a torque transducer which recorded

forces. During measurement, the plates and test sample were enclosed in a heated chamber purged

with nitrogen. The chamber and the plates were preheated to the test temperature before loading

the sample disc. This was necessary to obtain a precise gap setting. Measurements were made on

each material under isothermal conditions at several selected temperatures between 280 to 380 "C.

Strain (oscillating amplitude) levels were selected to assure that the measurements were

performed within the material's linear viscoelastic response range and, at the same time, adequate

torque values were generated. Repeatability of the measurements performed at each temperature

was checked by varying strain values. Such repeatability is also an indication that sample oxidation

effect, if any, is negligible. The recorded cyclic torque values were separated into in-phase and out-

of-phase components with respect to the oscillatory deformation imposed on the sample, and the

corresponding storage (G') and loss (G") moduli were calculated by the Rheometrics Data

Acquisition and Analysis package.

In another experiment, the rectangular torsion mode in the System IV was employed.

Dimensions of the samples with rectarigular shape were me_sm:ed as _._ X '5 x .0215 inches, S_alia

imposed on the sample was varied manually during the measurement so that the proper torque level

could be maintained, Oscillatory frequency was held constant at 10 rad/s. Temperature scans were

made at 4°C increments after a 4 minute thermal soak at each rfieasurement temperature.

Measurements of the viscoelastic properties Were taken at the end of each 4 minute soak. A slight

tensional force was always exerted on the sample during the entire course of the temperature scan.
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RESULTS AND DISCUSSION

DSC measurements of the as-received LaRC-TPI 1500 materials are shown in Figure 1.

Measurements were made at a heating rate of 20°C/min. A single endothermic peak was observed

for both MTC-MFG and MTC-HFG samples with slightly different peak temperatures of 305"C

and 295*C, respectively.

The endothermic peaks shown in the DSC thermograms represent the mehings of

crystallinity in the polymers. The presence of crystallinity in the as-received MTC-MFG sample

has been confirmed by X-ray diffractography as shown in Figure 2. The X-ray diffraction pattern

reveals the existence of crystalline reflections at various 20 angles from 5 to 40 degrees. This

diffraction pattern is identical to the one previously reported for the as-received sample of LaRC-

TPI (lot 72-501) from MTC [8]. This suggests that the MTC-MFG material may have been

subjected to a similar thermal post treatment after the cyclodehydration during the manufacturing

process.

Also shown in Figure 2 is the diffraction pattern of the MTC-MFG sample which has been

annealed at 320°C for 65 hrs. Under this annealing condition, the initial crystallite phase in the as-

received material was first melted, and a new (different) crystallite phase was formed. The

diffraction pattern of this regenerated crystalline phase is noted to be identical to the one which

resulted from higher temperature (such as 320°C) annealing, reported for all of the semi-crystalline

LaRC-TPls studied up to date including samples from MTC, Rogers Corp. and those developed in

house by NASA [8].

Heat of fusion for the MTC-HFG sample (AH = 46.8 J/g) was about 15% higher than

MTC-MFG sample (AH = 39.3 J/g). The Tg s were not readily detectable from DSC scans for

both as-received materials. It was also found that less than 5% weight loss was recorded for both

materials by the thermogravimetric (TGA) measurement during a programmed temperature scan up

to 500°C.

Overall Crystallization Behavior

Unlike other thermoplastics, such as Poly(aryl-Ether-Ether-Ketone) (PEEK), the LaRC-

TPI 1500 polymers are not readily recrystallizable after the melting of the initial crystalline phase

during a number of single thermal treatments at various conditions. When a sample was heated

from room temperature (RT), at a rate of 20*C/min, to several temperatures higher than the initial

crystalline melting peak temperatures, and followed by a rapid quench, neither the presence of
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crystallization exothermpeaksduring the initial scan,nor the existenceof crystallinemelting

endothermicpeaksduringthesecondscanafterthequench,wereevident.
Investigationsof therecrystallizationbehaviorof theLaRC-TPI 1500polymerstreated

underprolongedisothermalannealingwereconductedby DSC. As-receivedpowderwasfirst

heatedat arateof 20°C/minfromRT toa specifiedtemperatureabovetheinitial meltingpoint (295

or 305°C). After the completion of various hold times at that temperature,a rapid quenchto

ambient temperaturefollowed. Subsequentthermogramswere obtained by rescanningthe

quenchedsamplesat arateof 20°C/minfrom RT to 400 *C. Typical thermogramsobtainedfor
MTC-MFG samplesaftervarioushold timesat 310*Careshownin Figure3. Thecharacteristicof

bimodaimeltingpeaksbecomesmoreevidentastheannealingtime becomeslonger. Both peaks,

which occuredat temperaturesof 327and 341°C,respectively,were higher than the annealing

temperature(310°C). Unlike therecrystallizationbehaviorobservedfor MTC LaRC-TPI lot 72-

50! samp!es[7], thePeakme!ting temPeratures did notincrease significantly w it!_ the increasing
......................

annealing times. The Ts s were also evident from the thermograms for all annealed samples. Tg =

242°C was found to stay the same, independent of annealing times. This value of Tg was lower

than the nominal 260*C attainable under similar annealing condition for other versions of the Mitsui

LaRC-TPI polymers studied before.

The thermograms obtained after various annealing times at 320°C and 330 *C are shown in

Figures 4 and 5, respectively. Characteristics similar to those discussed above for the samples

annealed at 310"C were observed. Higher crystalline melt peak temperatures were reached, as

expected, with increasing annealing temperatures. In the case of 330°C annealing, the peak of the

higher melting temperature gradually became less evident as the annealing time became longer.

The position of the peak temperatures, however, remained stable independent of annealing times.

Peak melting temperaturesand the heat of fusion are tabulated in Tables 1 and 2, respectively. It is

also noted that the Tg remainedapproximately the same at 242 °C for samples annealed under all

three temperatures.

The recrystaUization behavior of MTC-HFG samples annealed at 320°C is shown in Figure

6. The heat of fusion and the crystalline melting peak temperatures are tabulated in Table 3 which

includes other two annealing temperatures as well. Examining these figures and tables, it is noted

that, after thermal treatments of prolonged annealing conditions investigated, the recrystallization

thermograms of the DSC and the glass transition temperatutes for the MTC-MFG and the MTC-

HFG polymers, were nearly indistinguishable.

The behavior of the Tg for the 1500 series samples with respect to the annealing

temperature and time were quite different from those previously reported for other versions of

MTC LaRC-TPI [7]. For example, an increase of over 20°C in T8 was observed for the lot 72-501

sample_annealed at _320;C for 60 minutes. =The stable Tg for the 1500 series LaRC-TPI was an
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indication of a relatively stable amorphous region in the material, and is attributed to the controlled

molecular weight through end capping of molecules. Values of Tg as high as 248"C are observed

in Figure 7 for a series 1500 sample annealed at 380°C for 1 hr.

The overall crystallization behavior discussed above is observed only for the LaRC-TPI

1500 series powder annealed isothermally at temperatures below 330"C. At annealing temperatures

higher than 330"C, there were no crystalline melting peaks that could be detected.

The crystallization behavior for the samples treated under constant rate of cooling

conditions were also investigated. As-received powder was first scanned at a rate of 20°C/rain

from RT to 320°C. A constant rate of cooling (2°C/min) was then immediately employed until

ambient temperature was regained. A subsequent thermogram was obtained by rescanning the

sample up to 400°C at a rate of 20°C/rain. Unlike the LaRC-TPI sample from lot 72-501 studied

before 17], no crystalline melting endotherm was evident during the second scan.

Kinetics of Isothermal Recrystailization Reaction

Crystallization kinetics are commonly analyzed by means of the Avrami equation [10, 11 ].

Xt = 1 -exp(-Zt n) (1)

where Xt is the weight fraction of crystallized material at time t, Z, a rate constant, and n, the

Avrami exponent.

There is considerable doubt as to the validity of a simple Avrami equation alone describing

the total crystallization behavior of bulk polymers. Despite this, however, analyses based upon

Eq. (1) are justified, as a means of comparison, but the values of the parameters Z and n may have

no mechanistic significances. Equation (1) can be rearranged as:

Log [ - Ln (1 - Xt ) ] = Log Z + n Log t (2)

The Avrami parameters can then be conveniently extracted from the slope and intercept of the

straight line in a plot of Log [- Ln (1 - Xt )] vs. Log t.

Measurements of crystallization exotherms are restricted by the sensitivity of the calorimeter

and the limit of sample size. For the LaRC-TPI series 1500 powders studied here, the slow

crystallization rates make the crystallization exotherms difficult to trace. It is possible, however, to
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study the kinetics of crystallization by measuring the crystallinity developed in various time

intervals from the area under the endotherms produced on subsequent melting as shown by Figures

3, 4 and 5. This method is more time consuming and less accurate, it was reported, however, to

give very similar crystallization isotherms to that of direct measurement in the study of

polyethylene crystallization kinetics [12]. _ _- -....

Plots of Eq. (2) for the MTC-MFG LaRC-TPI powders treated isothermally at three

temperatures are shown in Figure 8. A straight line can be satisfactoriiy determined by the least

squares fit for each set of data. The Avrami parameters extracted from the fits are tabulated in

Table 4. Also included in Table 4 are those reported previously for LaRC-TPI lot 72-50I samples

[7]. It is noted that the n values are fractional but independent of annealing temperatures. The

crystallization rate constant, Z, was much smaller for the series 1500 LaRC-TPI polymer.

Comparisons between Eq. (1) and the experimental data are shown in Figure 9. The

agreements are considered satisfactory. It can be seen that among the three annealing temperatures

studied here, T = 330"C was the least favorable crystallization temperature for the material. The

fastest crystallization reaction rate occured, however, at 310"C as can be seen in this figure.

Melt Rheology

Unlike samples of earlier versions of LaRC-TPI from MTC, the as-received 1500 series

polymers were relatively stable in the hot melt processing. Figure 10 shows the thermal stability of

these two polymers annealed at 350°C. Measurements were made by the parallel-plate small

amplitude dynamic experiments, with angular frequency of co = 10 rad/sec and strain of 10% in the

Rheometrics System IV rheometer. Two linear viscoelastic properties, i.e., the storage modulus,

G'(c0), and the loss modulus, G"(c0), were directly obtainable. The complex viscosity, rl*, was

calculated from

11" (co) = G*(c0)/o = [G'(c0) 2 + G"(c0) 2] lt2/co (3)

The initial drops in the linear viscoelastic properties, as noted in Figure 10, were attributed

to the temperature effects. Sample MTC-MFG exhibited a higher level of thermal stability than that

of the MTC-HFG sample. Within the duration of the measurement, the MTC-MFG polymer was

essentially unchanged, while an increase from 8 x 103 to 4.5 x 104 dynes/cm 2 in G'(t) was

observed for the MTC-HFG polymer. For a comparison of thermal stability, an increase of over 3

orders of magnitude in G'(t) was reported for MTC LaRC-TPI lot 72-501 sample [13].
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It has been noted that Irl*(to)l closely resembled rl(q/), in which rl(')) is the steady shear

viscosity at shear rate 4/. The relationship rl(_/) = rl*(to) is known as the Cox-Merz rule [14]. It has

been proven very useful in predicting rl(;/) when only linear viscoelastic data are available [15].

Complex viscosities of both MTC-MFG and MTC-HFG LaRC-TPI polymers measured between

280 - 380°C are shown in Figure 11. At approximately 100°C (T = 340°C) above the glass

transition temperature (Tg = 242°C) of the polymers, the zero shear viscosities were 104 and 2 x

103 Pa secs for the MTC-MFG and the MTG-HFG polymers, respectively.

Master curves of "l]p*(top), Gp'(top) and Gp"(top) are shown in Figures 12 and 13 for both

grades of series 1500 LaRC-TPI. These curves were constructed based on the principle of time-

temperature superposition [16]:

Qp (top, Tr) = Q (to,T) (4a)

Qp=Q Tr Pr/T P (4b)

with top = to aT, where aT is the shift factor, 9 is the density and Q represents any linear

viscoelastic property. The reference temperature was selected at T r = 320°C. The resultant shift

factors, aT (T), as tabulated in Table 5 for these two polymers, can be well illustrated by the WLF

theory [16], as shown in Figure 14, with the two material parameters C1 and C2 included in Table

5 as well. It is noted that aT is independent of Mw and molecular weight distribution (MWD). This

behavior indicates that, for the polymers of LaRC-TPI under investigation, the molecular weights

were at levels above the critical molecular weight, Me, at which the entanglement effect becomes

evident [ 17, 18]. According to the following formula:

E n = 2.303 (C1 / C2 ) R Tr 2 (5)

where R is the universal gas constant, the activation energy for viscous flow is E n = 69.8

kcal/mole for these polymers. The master curves extend the frequency range from three to six

orders of magnitude as shown in the Figures. Gp'(top) and Gp"(top) include the melt flow or

terminal zones in the lower frequency region and extend into the high frequency regime where the

beginning of rubbery zones become visible.

It is well established that the rheological properties of polymer melts are dependent on the

weight average molecular weight (Mw) and the molecular weight distribution (MWD) [16, 19, 20].

The rheological properties obtained from the dynamic measurements can be related to molecular

structure. The frequency dependence of the dynamic moduli (G'(to) and G"(to)) is dependent on
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the distribution of relaxation times. For linear polymers, such as the LaRC-TPI, with no long

chain branching, this is governed by the distribution of molecular weights. Some observations

with regard to the Mw and MWD of these two polymers can be made from the master curves of

Gp'(top) and Gp"(top) of Figure 13 as follows: __

(i) The broad transitions from the terminal to the rubbery zone are indications of broad

MWD possessed by these polymers. The extension of the terminal zone of sample MTC-MFG

further into the lower frequency regions indicates that the MTC-MFG polymer has a higher Mw

than the MTC-HFG material.

(ii) In the terminal zone (i.e., lower frequency regime), the theory of linear viscoelasticity

gives

lim Op" (top) = rio

to ---_ 0

(6)

lim Gp' (tOp) = 11o2 Je ° top2

to --_ 0

(7)

where rio is the zero shear viscosity and Je ° is the steady state compliance of the material. It had

been experimentally established that rio is governed by the longest relaxation time, and is related to

Mw a, independent of M_ for many high polymers, ct equals 1 for polymers with low _¢. For

polymers of flexible backbone chains, with _ > _' where Mc is the critical molecular weight for

entanglement effects to become dominant, ot becomes 3.4. For molecules with stiff backbone

chains, however, higher values of ot (5.0 - 5.5) were reported for aromatic polymers [18, 21].

Je ° accounts for the elasticity of the macromolecules. Because of the sensitivity of this quantity to

the subtle differences in the MWD, especially in the high molecular weight tail, Je ° is usually

related to the ratio of a higher moment in molecular weights, such as the polydispersity ratio M w /

Mn.

Based on these observations, a reduced variable was introduced by Zeichner et al. [22, 23]

to eliminate viscosity (or equivalently M_) differences between polymers. The reduced frequency

was defined as toR = 1"1otop. By shifting the Gp'(top) and Gp"(top) master curves along the

reduced frequency axis, polymers with identical MWD will superimpose one on the other,

irrespective of the differences in Mws. For polymers having different MWDs, by overlapping the

Gp"(t.0R) curves at the regime of low frequency ends, the rest of the curves will not be
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superimposable.Instead,broaderMWD polymerswill exhibitmastercurveswith lower slopesin

thetransitionregimebetweenterminalandrubberyzones.
For theLaRC-TPIspresentlystudied,we haverio =1.13x 104and4.83 x 10 4 Pa secs for

MTC-ttFG and MTC-MFG samples, respectively, at 320"C. The master curves, Gp'(C0 R) and

Gp"(O)R), constructed with respect to the reduced frequency m R are shown in Figure 15. It is

notcd that the master curves of both materials are superimposable over a broad frequency scale.

This suggests that an identical MWD exists in these two polymers.

(iii) Based on the same observations stated in (ii) for the viscoelastic behavior of high

polymers with respect to the Mw and MWD, Dormier et al. [24] suggested to shift the Gl,"(c0 p)

curves directly for the resins to be compared, such that the best possible superposition is obtained

at 1he lowest frequencies measured. This shifting procedure removes the effcct of differences ill rl,,

(i.e., M,,,,). The extent of overlap for both Gp'(mp) and Gp"(¢.%) for data shifted in this fashion

may then be interpreted in terms of relative Mw and MWD.

Dormier et al. proposed, in particular, that the frequency shift, a m, needed to overlap the

low frequency (long relaxation time) ends of Gp"(c0p) curves could be used to estimate the ratio of

M ws by

(Mw)h / (Mw)l = (am) t/,_ (8)

where h and 1 denote samples with the higher and lower molecular weights. Measurements of

GPC and rheological properties on a series of polyethylenes [24] with various M w and MWD had

confirmed the validity of Eq. (8) with o_ = 3.4.

For the series 1500 LaRC-TPIs studied here, the shifted master curves of Gp'(%,) and

GF,"(o)p) for both polymers are shown in Figure 16. It can be noted thz_t tile master curves are

.,;uperimposable over a broad range in frequency scale. This also confirms the conclusions made in

(ii) above that an identical MWD profile exists in both of these polymers. The shift factor was

found Io be am = 4.8, which gives a ratio of (Mw)MF G / (Mw)HF o = 1.6 _md 1.4 with cz = 3.4

and 5.0, respectively, for these two grades of LaRC-TPI. Such information with regard to the

molecular weights and the distributions, extracted from the rheological properties of the I.aRC-TPI

polymers as discussed above, compares favorably to_those provided by MTC*, where an identical

polydispersity of 3.0 and a ratio of (Mw)MF G / (Mw)Hr:G = 1.27 were obtained from tile Low

Angle Laser Light Scattering CLALLS) measurements for these two grades of 1500 series LaRC-

TPI.

*PrivzHc communications with Dr. Terry L. St. Clair, NASA LaRC
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Viscoelastic Properties of Solid Samples

The complex modulus, G*, measured by the rheometer during a temperature scan at a fixed

frequency of 10 rad/s is shown in Figure 17. Amorphous samples of both MFG and HFG

polymers were fabricated by compression molding. Test specimens with rectangular shapes were

then cut from the 3" x 3" molded pieces. It can be seen from the figure that the temperature ranges

in the glass transition, which occured around 260°C, covered 40-60°C. Below Tg, the moduli were

at approximately 1 - 2 x 10 l° dynes/cm 2 level typical for such high performance materials. After

T_,, a drop of more than 3 orders of magnitude in moduli was evident for both grades of polymers.

Also included for comparison in Figure 17 are the viscoelastic properties of semicrystalline

Poly(aryl-Ether-Ether-Ketone) (PEEK) and the other versions of Mitsui LaRC-TPI documented

before in the literature [7]. The amorphous and semicrystalline LaRC-TPI samples [7] were

molded from the Mitsui lot 72-501 powders, in which the oligomers were not encapped. Thus,

unlike 1500 series polymers, the molecular weights in the molded samples were not controlled. It

is seen that after the glass transition, the modulus of the amorphous sample dropped only

approximately two orders of magnitude, which is an indication that the molded samples fabricated

from lot 72-501 possessed higher molecular weights than the 1500 series materials. The higher

moduli after Tg observed for the semicrystalline (PEEK and LaRC-TPI) samples are attributed to

the crystallinities in those samples. The glass transition temperatures of PEEK, reported at 145°C,

is however seen to be significantly lower than the nominal Tg of 260°C possessed by the LaRC-

TPI material.
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CONCLUSIONS

The thermalproperties,crystallizationbehaviorandthemelt rheologyof two batchesof

series1500LaRC-TPIpolymerhavebeencharacterized.Thesematerialsweresuppliedby Mitsui
Toatsu Chemical, Inc. (MTC) of Japan.The use of molecule endcappingduring synthesis

distinguishedthesepolymersfrom all thepreviousversionsof LaRC-TPIfrom MTC, andmade

thesepolymersmorestablewith lessreactionby-productgenerationin the subsequenthot melt

processing.
A transientform of crystallinity wasfound in theas-receivedpolymers.The diffraction

patternsmeasuredby WAXS was identicalto theone found previouslyin theother as-received

LaRC-TPIpowdersfrom MTC, which suggestedthatthesematerialsmay havebeensubjectedto
similar thermalposttreatmentafterthecyclodehydrationduringthemanufacturingprocess.

Theas-receivedpowdersarelessreadilyrecrystallizableattemperaturesabovetheir initial

melting peak temperatureswhen comparedto other semicrystallinethermoplastics. For the

samplesannealedat temperaturesbelow330°C,a semicrystallinepolymerwasobtained.On the

otherhand,apurely amorphousstructurewasrealizedin the samplesannealedat temperatures
above330°C.

Isothermalcrystallizationkinetics were studiedat 310,320 and 330°Cby meansof the

simple Avrami equation. The Avrami exponentconstants,n, were found to be fractional and

independentof annealingtemperatures. The rate constantsof crystallization were found to
decreasewith increasingannealingtemperatures,andwere muchslower(aboutthreeordersof

magnitudesamller)thanthosereportedfor otherversionsof LaRC-TPIfrom MTC.

Melt theology measurementsindicatedthesematerialsshouldbevery processable.At
approximately100°Cabovetheglasstransitiontemperatureof thepolymers(T=340°C),thezero

shearviscositiesarein therangeof 103- 104Pasecs. Mastercurvesof thestorageandtheloss

moduli wereconstructedby theprincipleof time-temperaturesuperposition,andtheshift factors

were satisfactorilyexplainedby the WLF theory. Comparingthe viscoelasticmastercurvesof

thesestwo polymers,ananalysiswasperformedwhichrevealedthat afactor of !,4 differencein

theweightaveragemolecularweightsexistedbetweenthesetwo batchesof 1500seriesLaRC-TPI

polymers.Thesetwo polymers were also shownby the rheological measurementsto possess

identicalmolecularweightdistributions.
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Table1. PeakCrystallineMeltingTemperatures(°C) for 1500SeriesMTC-MFG Samples
AnnealedUnderVariousIsothermalConditions

t (Minutes)

15

30

45

60

90

120

180
240

300

360

327.3,

327.5,

327.5,

327.5,
327.5,

310"C

337.3
340.0

341.0

341.7

342.7

342.6

342.6

342.7

320"C

347.7,

346.3,

346.9,

346.9,

---, 339.9

---, 343.0

---, 344.6

---, 346.5

338.2, 347.9

338.2, 347.8

338.2, 348.3

338.9, 347.7

330"C

346.0

346.7

348.6

350.7

352.3

352.3

351.8

353.6

354.5
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Table2. Heatof Fusion(J/g) For 1500SeriesMTC-MFG SamplesAnnealedUnderVarious
IsothermalConditions.

t (Minutes)

15

30

45

60

90

120

180
240

300

360

310°C

0.40

1.54

3.65

8.51

21.92

29.30

31.80

33.93

320°C

0.47

1.86

3.67

7.97

22.28

27.69

31.08

32.33

330°C

0.13

0.58

1.26

2.58
7.51

16.39

27.00

29.07

29.67
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Table3. Heatof FusionandCrystallinePeakMeltingTemperaturefor 1500seriesMTC-HFG
SamplesAnnealedunderVariousIsothermalConditions

t (mins)

120

180

300

"310°C 320°C 330"C

AH.(J/g) Tm(*C) AH(J]g) Tm(*C) AH(J/g) Tm(°C)

w-w

327.5, 342.7

327.5, 342.1

_mm

34.55

35.20

30.87

31.54

32.04

347.2

338.5, 347.2

338.2, 347.0

27.70

28.77

346.0, 353.2

346.5, 353.7
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Table4. AvramiParametersfor Isothermal Crystallization Reaction of LaRC-TPI Powders.

Sample

Lot 72-510 [7]

Lot 58-704

(1500 Series, MTC-MFG)

T(°C), ,

280

300

320

n

1.033

1.101

1.109

310

320

330

2.50

2.644

2.707

Z x 102 (min2) TM

7.75

4.86

3.73

0.00117

0.00062

0.00016

19



Table 5. Shift Factors aT and Material Parameters C 1 and C 2 of the WLF Equation for LaRC-TPI
1500 Series Polymers

T (*C) aT, MTC-MFG aT, MTC-HFG

280

290

300

320

340

360

380

C1

C2

31.4

9.1

1.0

0.17

0.03

0.0082

10.37

238.79

134.6

9.8

1.0

0.17

0.035

0.0102

8.59

198.60
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LaRC-TPI 1500 series

Sample MTC-MFG
310oC Annealing

180 mins

I ,,. I I I

180 220 2660. 300 340 380

T (°C)

Figure 3. DSC thermograms for the MTC-MFG polymer annealed at 310°C for various lengths
of time indicated.

23



,,5

t

O

iii

LaRC-TPI 1500 series
Sample MTC MFG

320°C. Anneali

J

I

180 220 260 300 340 380

T (°C)

,

Figure 4. DSC thermograms for the MTC-MFG polymer annealed at 320°C for various lengths
of time indicated. _ ...........
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Figure 5.
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DSC thermograms for the MTC-MFG polymer annealed at 330°C for various lengths
of time indicated.
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Figure 6.
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DSC therm0-grams for the _C-_G polymer annealed at 320°C for various lengths
of time indicated.
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